
Strategical Argumentative Agent for Human Persuasion
Ariel Rosenfeld1 and Sarit Kraus2

Abstract. Automated agents should be able to persuade people in
the same way people persuade each other - via dialogs. Today, au-
tomated persuasion modeling and research use unnatural assump-
tions regarding persuasive interaction, which creates doubt regard-
ing their applicability for real-world deployment with people. In this
work we present a novel methodology for persuading people through
argumentative dialogs. Our methodology combines theoretical argu-
mentation modeling, machine learning and Markovian optimization
techniques that together result in an innovative agent named SPA.
Two extensive field experiments, with more than 100 human sub-
jects, show that SPA is able to persuade people significantly more
often than a baseline agent and no worse than people are able to per-
suade each other.

1 Introduction
Persuasion is designed to influence others by modifying their beliefs
or actions. People often engage in persuasive interactions through di-
alog in which parties who hold (partially) conflicting points of view
can exchange arguments. Automated agents should be able to per-
suade people in the same manner; namely, by presenting arguments
during a dialog.

Persuasive technologies offer various techniques for an automated
agent (the persuader) to convince a human (the persuadee) to change
how she thinks or what she does [17]. Some of these techniques
use argumentative dialogs as their persuasion mechanism. How-
ever, strategical aspects of argumentative persuasive dialogs are still
under-developed (see [51] for a review). Argumentation Theory has
recently investigated the challenge of finding optimal persuasion
strategies in dialogs [26, 24]. In particular, the proposed approaches
do not assume that the opponent will play optimally, which is a com-
mon assumption in game theoretical analysis of persuasion dialogs
[20, 40], and do not assume perfect knowledge of the persuadees’
characteristics. The proposed methods have yet to be investigated
with people, mainly due to their assumed strict protocols for the dia-
log which make their implementation with people very challenging.

In this paper we present a novel methodology for designing au-
tomated agents for human persuasion through argumentative dialogs
without assuming a predefined protocol. Our methodology is based
on a newly designed argumentation framework called the Weighted
Bipolar Argumentation Framework (WBAF) which we introduce in
this paper and for which we suggest a semantic. The framework and
semantic are aimed at modeling the initial beliefs held by a reasoner
(in our case, the persuadee) as well as the fuzzy nature in which ar-
guments and opinions within the framework affect each other. Un-
like classic semantics which label each argument in the framework
as justified or not, our suggested semantic allows each argument to
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carry a continuous value representing its justification level within
the framework. Then, we formally define the persuasion task given
the assumption that the persuadee acts stochastically. The persua-
sion task’s goal is to maximize the probability that the persuadee
will take the desired action or change her views on a given matter by
presenting arguments. We reduce the persuasion task to a Partially
Observable Markov Decision Process (POMDP) [28] and approxi-
mate its solution using the prediction of the persuadee’s argumenta-
tion framework and argumentative behavior. This prediction is done
using Machine Learning (ML) techniques based on collected human
argumentative data. Using the obtained policy, which approximates
the optimal policy for the corresponding POMDP, our agent presents
arguments to its human interlocutor during a dialog.

In two field experiments, with a total of more than 100 human
subjects3, we show that our agent, which we named SPA, was able
to persuade subjects to change their opinions and take a desired ac-
tion significantly more often than when interacting with a baseline
agent and no worse than when subjects attempted to persuade each
other. To the best of our knowledge, this is the first work within the
context of strategical argumentation to consider the optimization of
persuasive dialogs with people.

The remainder of the paper is organized as follows. In Section 2
we survey related work. In Section 3 we present the theoretical argu-
mentation framework used in this work and suggest a semantic for it.
In Section 4 we formally define the persuasion task and in Section 5
we describe our methodology and solution using a novel arguments
provision agent (named SPA). In Sections 6 and 7 we evaluate our
methodology in two real-world domains. Finally, in Section 8 we
provide a summary and list future directions for this line of study.

2 Related Work and Background

Theoretical modeling and strategical studies of agents’ behavior
in persuasion interactions, within both argumentation theory and
multi-agent systems, have presented logics, protocols and policies
which enable agents to engage each other in a meaningful manner
[52, 30, 36, 31, 7, 37, 13, 19]. In this realm, studies rely on the as-
sumption that the engaging agents adhere to strict protocols and log-
ics or that the agents are given unrealistic prior knowledge on their
opponent’s knowledge and beliefs [51]. Furthermore, strategic per-
suasion is inherently NP-complete [21].

The literature on the optimization of persuasive strategies in argu-
mentative dialogs can be divided into 2 broad approaches:
1. Game Theory – in which the agent assumes that its counter-part

maximizes expected utility acts optimally.
2. Heuristic-Based – in which the agent uses a strategy following

some rule-of-thumb notion.
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In the Game Theory approach, theoretically founded methods and
guarantees are provided for computing optimal argumentative strate-
gies (e.g., [40]). However, it has been shown that people often do not
adhere to the optimal, monolithic strategies that can be derived an-
alytically in the argumentative context [41, 42, 43]. Therefore, this
work is suited to the Heuristic-Based approach.

In the Heuristic-Based approach, the persuadee is neither assumed
to be strategical nor is she assumed to act optimally. Several heuris-
tics for persuasive dialog policies have been proposed in the litera-
ture, for example, the heuristic of selecting arguments supporting the
agent’s most important values is proposed in [5], revealing as little in-
formation as possible [34] or presenting arguments which have a high
success rate from past experiences [53]. As observed in [23], a his-
tory of previous dialogues can be used to predict the arguments that
the persuadee might put forward. Naturally, this prediction (some-
times called persuadee or opponent modeling) is a key component
in designing persuasive arguments; a recent example is presented in
[29]. In this realm, the persuadee is usually assumed to act stochas-
tically, an assumption we also make in this work. However, the per-
suader is not assumed to have perfect knowledge of the persuadee’s
characteristics. To address this shortcoming, we propose a method-
ology for predicting people’s argumentative choices during a dialog
using Machine Learning (ML) techniques. Rosenfeld and Kraus [43]
have recently showed that ML can be extremely useful in predicting
human argumentative behavior in human discussions. We use the au-
thors’ suggested methodology in this work such that given a certain
state of the dialog, the persuader can estimate the persuadee’s next
argument using ML.

Hadoux et al. [24] have suggested a variation of a Markovian
model to optimize persuasive behavior in dialogs. As in previously
suggested modelings, the authors impose restrictive assumptions on
the persuader’s and persuadee’s behavior which are relaxed in this
work. Hunter [26] also presented a probabilistic modeling of the per-
suasive dialog using asymmetrical dialog procedure, in which only
the persuader can posit arguments. In this work, we assume a sym-
metric dialog in which both parties can posit arguments. Neither
of the works mentioned above, like most other works in the field,
have been evaluated with people. This fact raises concerns regard-
ing the applicability of the suggested and well thought out theoret-
ical modelings when accounting for human argumentative behav-
ior. Thus far, very little investigation has been done regarding how
well the proposed Argumentation Theory modelings apply to hu-
mans. As far as we know, only a handful of papers address the topic
[3, 38, 18, 12, 43]. These papers do not account for persuasive argu-
mentative interactions.

The Natural Language Processing (NLP) community has also ad-
dressed the issue of automatic persuasion in various settings. For
example, by generating personalized smoking cessation letters [39],
ranking textual arguments by their persuasiveness [22] and the anal-
ysis of the persuasiveness of arguments in online forum discussions
[49]. The proposed methods focus on linguistic features rather than
strategical human-agent interaction, and therefore complement the
proposed notions of this paper. Note that the development of au-
tomated argumentation-based agents, such as the one presented in
this study, necessitates the assumption that natural language state-
ments can be automatically mapped into arguments. Despite recent
advancements in NLP and Information Retrieval (IR) and their stud-
ied connections to argumentation [1, 32, 9, 33, 48, 8], this assump-
tion is not completely satisfied by existing automated tools. Hence,
throughout this work we use a human expert annotator whom we
hired as a research assistant. We hope that this work will inspire other

researchers in NLP and IR to tackle the problem of automatically
mapping natural language statements into arguments as well as other
open problems of great importance in argumentation-based systems.

3 Theoretical Modeling
In order to perform reasoning in a persuasive context, an argumenta-
tion framework needs to be defined (see [6, 10] for recent reviews).
In its most basic form, an argumentation framework consists of a set
of argumentsA and an attack relationR overA×A (see [14]). In our
previous investigations of human argumentative behavior [42, 41, 43]
we noticed that people often use supportive arguments rather than at-
tacking ones, which necessitates the addition of the support relation
as suggested in [11]. Furthermore, we noticed that people associate
different belief levels in arguments, as suggested in [50, 4], and dif-
ferent strength levels with interactions between arguments, as sug-
gested in [15].

Therefore, throughout this work we use the newly proposed
Weighted Bipolar Argumentation Framework (WBAF) which inte-
grates the basic notions from the Bipolar Argumentation Framework
[11], the Weighted Argumentation Framework [15], the Quantitative
Argumentation Debate (QuAD) Framework [4] and the Trust Argu-
mentation Framework [50].

Definition 1. Let V be a completely ordered set with a minimum
element (Vmin) and a maximum element (Vmax). A Weighted Bipolar
Argumentation Framework (WBAF) < A,R, S,W,B, ω > consists
of a finite setA called arguments4, two binary relations overA called
attack (R) and support (S), an interaction weighing function W :
R ∪ S → V and an argument belief function B : A→ V . ω ∈ A is
a designated argument which represents the discussed issue.

We will refer to the WBAF as the “argumentation framework”
from this point forward.

In Definition 1, we assume 2 types of possible interactions be-
tween arguments: attack and support. That is, if argument a ∈ A
relates to an argument b ∈ A, then aRb or aSb holds, respective of
the relation type. It is argued that the use of both support and attack
relations in argumentation frameworks is essential to representing
realistic knowledge (see [2] for a survey). We also allow relations to
carry different weights. The weighing function W : R ∪ S → V
returns a value for each pair of arguments belonging to the attack
or support relations representing the degree to which one argument
attacks or supports the other. Based on preliminary experiments, we
assume that while the attack and support relations are not disputable
in our modeling, each agent may have a different W function. We
also incorporate a belief function B : A → V in our model. The
belief function represents the belief that a reasoner has in each ar-
gument on its own, regardless of other arguments. Again, beliefs are
personal and different agents may have different beliefs. ω denotes
the argument of interest. Specifically, a reasoner seeks to evaluate ω
in the context of the argumentation framework.

Example 1. The following is a part of an argumentation framework
on the topic “You should have a Computer Science Master’s Degree”
as collected in Section 6.1.
A consists of the following arguments: ω =“You should have a Com-
puter Science Master’s Degree”, a = “A Master’s Degree helps in
getting well-paying jobs.”, b =“Experience is more important than
education. Therefore, a master’s degree will not help in getting bet-
ter jobs.” and c =“Conducting academic research is challenging

4 In this work, represented as short textual statements.



and interesting”. R is defined to be {< b, a >} as argument b
attacks argument a. S is defined to be {< a, ω >,< c, ω >}
as both a and c directly support ω. W and B could be defined
differently by each reasoner. For example, W can be defined as
W (< b, a >) = 0.5,W (< a, ω >) = W (< c, ω >) = 0.2,
indicating that the reasoner who uses this argumentation framework
believes that b’s attack on a is stronger than a’s support of ω and
c’s support of ω. B can be defined as B(a) = 0.1, B(ω) = 0.5,
B(b) = B(c) = 0.7, indicating that the belief of the reasoner in a
(not taking into account any other arguments) is lower than she has
in b. See Figure 1 for an illustration.

Figure 1. An example of a WBAF, as specified in Example 1. Nodes
represent the arguments, arrows indicate attacks and arrows with diagonal
lines indicate support. The numbers within the nodes represent the belief

function and the numbers next to the edges represent the weighing function.

In our framework we assume that a reasoner uses an evaluation
function v : A → V which assigns a real value to each argument
while contemplating the argumentation framework. Note that v is
different from the belief functionB as the belief function captures the
belief a reasoner has in an argument on its own, regardless of other
arguments in the argumentation framework. The evaluation function
v can be defined in various ways capturing different underpinning
principles. In any suggested evaluation function one needs to address
3 issues:

1. Propagation - how does the valuation of argument a influence
argument b given the weight of the relation between a and b?

2. Summation - how do attacking (supporting) arguments accrue?
3. Consolidation - how are the attacking arguments and supporting

arguments incorporated?

These three issues are addressed in Definition 2, which is an exten-
sion of the gradual valuation in Bipolar Argumentation Frameworks
[11] to gradual belief valuation in WBAFs.

Definition 2. Let WBAF =< A,R, S,W,B, ω > where W and
B are defined over V , and let V ∗ be the set of all finite length tu-
ples of values in V . Let h : V × V → V be a propagation func-
tion, evaluating the quality of attack/support which one argument
has on another; let fatt : V ∗ → Fatt (resp. fsup : V ∗ → Fsup) be
the summation function, evaluating the quality of a set of attacking
(resp. supporting) arguments; and let g : Fatt × Fsup × V → V be
the consolidation function which combines the impact of the attack-
ing arguments with the quality of the supporting arguments and the
initial belief in the argument.

Consider a ∈ A with arguments b1, . . . , bn as attacking argu-
ments (biRa) and c1, . . . , cm as supporting arguments (ciSa). A

gradual belief valuation function on AF is v : A → V such that
v(a) = g(fsup(h(v(b1), w(b1, a)), . . . , h(v(bn), w(bn, a))),
fatt(h(v(c1), w(c1, a)), . . . , h(v(cm), w(cm, a))),
B(a)).

An instantiation of a gradual belief valuation function is consid-
ered legitimate if it satisfies the following axioms (for convenience,
in the following f indicates both fatt and fsup):

1. h(x, y) must be non-decreasing in both x and y.
2. xi > x′i → f(x1, . . . , xi, . . . , xn) > f(x1, . . . , x

′
i, . . . , xn)

3. f(x1, . . . , xn) > f(x1, . . . , xn, xn+1)
4. f() = α ≤ f(x1, . . . , xn) ≤ β5.
5. g(x, y, z) must be non-decreasing in x and z and non-increasing

in y.

The above axioms capture basic principles that should be followed
by any legitimate gradual belief valuation function. Axiom 1 assures
that the propagating value from one argument to another depends on
the source argument’s justification level and the interaction weight
in a non-negative manner. Axioms 2, 3 and 4 assure that the sum-
mation function increases in the number and quality of the relevant
arguments, yet the value is bounded. Axiom 5 assures that the con-
solidation function does not decrease in the summed strength of the
supporting arguments and does not increase in the summed strength
of the attacking arguments. Furthermore, it assures that the function
does not decrease in the belief level of the argument.

Definition 2 gives rise to a family of valuation functions. Given
an argument of interest, the value returned by the valuation function
represents the reasoner’s ability to support that argument and defend
it against potential attacks. The higher the strength level, the easier it
is to support and defend the argument, and the harder it is to attack
it. In this study we use the following instantiation:

h = min, V = [−1, 1], Fsup = Fatt = [0,∞],

fsup(x1, . . . , xn) = fatt(x1, . . . , xn) =

n∑
i=0

xi + 1

2

and g(x, y, z) = max{ 1
1+y
− 1

1+x
, z}.

The above instantiation is inspired by the ArgTrust application
[50], which uses a propagation function of min, and extends the
gradual valuation function definition in [11] to incorporate belief and
propagation. The motivation for this choice is twofold: first, the se-
lection of min as a propagation function induces an upper bound on
the affect one argument has on the other. The selection of the sum-
mation and consolidation functions is a natural extension of [11] and
they provide desirable properties such as the ones described above as
axioms. An example for the use of the above gradual belief valuation
function is presented in Example 2.

Proposition. The suggested instantiation is a gradual belief valua-
tion function.

Example 2. Using Example 1’s argumentation framework, our pro-
posed gradual belief valuation function will provide the following:
v(ω) = 0.53,v(a) = −0.43,v(b) = 0.7 and v(c) = 0.7. If we were
to remove a and b from the argumentation framework, v(ω) would
decrease to 0.37. Similarly, if we remove c from the argumentation
framework, v(ω) would decrease to 0.3 (its belief level).

5 α (β) is the minimal (maximal) value of Fsup (resp. Fatt)



We assume that the higher v(ω) is within a reasoner’s argumen-
tation framework, the more positive the reasoner’s attitude will be
towards the topic of interest (ω). Therefore, in a persuasive setting, it
is the persuader’s task to try and maximize the persuadee’s valuation
v(ω). We discuss this task next in Section 4.

4 Persuasive Dialog Optimization

A persuasive dialog is a finite sequence of arguments
< a1, a2, . . . , an > where arguments at odd indices are pre-
sented by the persuader and arguments at even indices are presented
by the persuadee. A dialog is terminated when the persuader uses
the “terminate” argument, which is only available to him.

We denoted D as the set of all finite length dialogs. At every even
index of the dialog, the persuader observes the current state of the
dialog d ∈ D and posits an argument a according to a persuasive
policy π. That is, π maps each possible even length dialog to an ar-
gument that the persuader should posit.

A persuasive agent seeks to execute an optimal persuasive dialog
policy, π∗. Namely, π∗ maximizes the expected value of v(ω) in the
persuadee’s argumentation framework by following it until the dialog
terminates.

We consider an environment in which the persuader is Omniscient,
namely, it is aware of all arguments affecting ω, the designated argu-
ment which represents the discussed issue. On the other hand, we
assume that the persuadee may only be aware of a subset of the argu-
ments of which the persuader is aware. This asymmetrical situation
is common when the persuader is an expert in the discussed issue and
the persuadee is not. Namely, an extensive WBAF which contains all
possible arguments affecting ω is maintained by the persuader. How-
ever, each persuadee holds a different WBAF that may differ from
the one held by the persuader. Consequently, the persuader seeks
to estimate the persuadee’s WBAF and strives to influence it. The
persuader can influence the persuadee’s evaluation of ω (denoted as
v(ω)) under the persuadee’s argumentation framework by introduc-
ing new arguments of which the persuadee was unaware. Once pre-
sented with an argument of which the persuadee was unaware, we
assume that the argument is added to the persuadee’s argumentation
framework and v(ω) is updated accordingly. In our environment, the
persuadee’s argumentation framework is not assumed to be known
to the persuader prior to or during the dialog. However, we do as-
sume that the persuader can obtain a probability distribution χ of
the possible persuadee’s argumentation frameworks, possibly from
past interactions. However, due to the infinite number of possible
argumentation frameworks (recall that the WBAF’s B and W func-
tions may return continuous numbers), constructing and using χ is
not straightforward. Note that the persuader can only be certain that
arguments that have actually been presented in the dialog are in the
persuadee’s argumentation framework.

We assume the persuadee’s choice of arguments depends heavily
on her argumentation framework. Namely, after an argument is pre-
sented by the persuadee, the persuader may change its estimations
of the persuadee’s argumentation framework as the persuadee’s ar-
guments act as “signals” to her argumentation framework. Namely,
when the persuadee posits argument a, the persuader learns that a
is part of the persuadee’s argumentation framework. Then the per-
suader can speculate why the persuadee chose to posit that argument.
For example, a reasonable explanation may be that the persuadee
thinks that a is well supported in her argumentation framework. A
more practical way to look at this phenomenon, which we use later
in this paper, is that the persuader speculates which argumentation

frameworks are likely to result in the persuadee presenting argument
a given the current state of the dialog.

Given any non-terminated dialog d, an optimal persuasive dialog
policy π∗ satisfies the following equation:

π∗(d) = argmaxa Eπ∗ [v(ω)|da] (1)

where Eπ∗ denotes the expected value given that the agent consis-
tently follows policy π∗ until the dialog terminates.

Note that calculating π∗ is infeasible due to the infinite number
of possible argumentation frameworks and the exponential number
of possible dialogs. Therefore, a persuader can only approximate the
optimal persuasive dialog policy. We address both issues next in the
design of our agent, SPA, in Section 5.

5 Strategical POMDP Agent (SPA)
In order to approximate the optimal solution for the dialog optimiza-
tion problem (Section 4), we show a reduction of this problem to a
Partially Observable Markov Decision Process (POMDP) [28]. As
discussed in Section 4, we do not assume that the persuadee’s argu-
mentation framework is known to the persuader prior to or during the
dialog. In other words, the persuadee’s state, i.e., her argumentation
framework, is only partially observable to the persuader. Neverthe-
less, the persuader does see the dialog that takes places, which we
will refer to as the observation, and can use it to derive insights
regarding the persuadee’s state. As the dialog progresses more argu-
ments are presented, which change the persuader’s observation and
possibly the persuadee’s state if new arguments are added to her ar-
gumentation framework. The persuader posits arguments, i.e., takes
actions, in order to influence the persuadee’s argumentation frame-
work. That is, following an action by the persuader a change in the
system occurs according to some transition function which we will
soon discuss. The persuadee also presents arguments in the dialog.
However, the persuadee cannot posit arguments of which she is un-
aware (i.e., they are not in her argumentation framework), therefore
the persuadee’s arguments only change the observation and thereby,
as discussed in Section 4, play an important role in estimating the
persuadee’s state. Naturally, the persuader seeks to maximize the ex-
pected value of v(ω) in the persuadee’s argumentation framework by
following the optimal persuasion policy. At the same time, the per-
suader wishes to avoid prolonging the dialog, as long dialogs may
bother or annoy the persuadee. To that end, the persuader may use a
discounting factor to favor short dialogs.

We model the persuasive dialog optimization problem as a Par-
tially Observable Markov Decision Process (POMDP).

Definition 3. A Partially Observable Markov Decision Process is a
tuple < S,A, T , D,R,Φ, γ > where:

• S is the set of all possible argumentation frameworks. s ∈ S is a
persuadee’s argumentation framework.

• A is the set of all arguments that may affect the evaluation of ω
and the argument “terminate”. a ∈ A is an argument that the
persuader can posit, i.e., a is in the persuader’s argumentation
framework. Recall that we assume that the persuader is Omni-
scient, and thus aware of all arguments affecting ω (see Section
4).

• T represents the state transition dynamics, where T : S ×
A × S 7→ {0, 1}. T (s, a, s′) is an indicator function specifying
whether a transition from s to s′ using a is valid. Formally,

T (s, a, s′) =

{
1 if s′ = s⊕ a
0 otherwise



where s⊕a is the resulting framework from adding argument a to
s.

• D is the set of all possible finite length dialogs. In our setting, D
is also the set of all possible observations.

• R : S×D 7→ V is the reward function for arriving at state s with
dialog d. We define

R(s, d) =

{
0 if d is non-terminated
v(ω) otherwise

• Φ is the conditional probability Φ(d | s′, a). We will discuss Φ
later in this section.

• γ is the discounting factor, representing the likelihood for the per-
suadee to be bothered or annoyed by a prolonged dialog.

SPA approximates the optimal solution for the above POMDP us-
ing Monte-Carlo Planning, an algorithm known as POMCP [46].
POMCP is a general purpose algorithm for approximating an opti-
mal policy in large POMDPs. The POMCP algorithm uses a Monte-
Carlo search tree to evaluate each argument that the persuader can
posit (at odd levels of the tree) given the state of the dialog (a node
in the tree). The search tree is rooted in the empty dialog.

The deployment of the POMCP algorithm does not necessitate the
explicit definition of Φ. Instead, POMCP requires 3 components:

1. I, a black-box simulator for sampling s ∈ S according to each
state’s initial probability χ (discussed in Section 4).

2. G(s, d, a), a generative model of the POMDP. This simulator re-
turns a sample of a successor state (s′), dialog (d′) and reward (r)
given (s, d, a), denoted (s′, d′, r) ∼ G(s, d, a).

3. πrollout, a policy that is deployed once leaving the scope of the
search tree.

SPA approximates I using Algorithm 1. In words, SPA is given an
annotated corpus C of dialogs between humans (without any agent
intervention) on a given topic ω. SPA assumes that the use of an
argument a in C is an indicator of its likelihood to appear in the per-
suadees’ argumentation frameworks. Therefore, Algorithm 1 sam-
ples an argument subset A′ out of all arguments available in C ac-
cording to each argument’s Maximum Likelihood Estimation (MLE)
[45].R and S are defined according to a manual annotation of the re-
lation between each pair of arguments in C. More details regarding
the annotation process are provided in [42]. For the definition of B
and W SPA is given two answer sets of questionnaires answered by
human participants, denoted Q1 and Q2. In Q1, human participants
rate the persuasiveness of each argument in C on its own, namely,
while disregarding all other arguments they may be aware of. We
model each subject’s answers in Q1 as the subject’s B function in
the corresponding argumentation framework. InQ2, the same partic-
ipants whose answers were recorded in Q1 rate the degree to which
arguments affect others. That is, participants are presented with pairs
of arguments from C for which a relation was annotated in the first
place. Participants rate the degree to which the first argument affects
the second one. We model each subject’s answers in Q2 as the sub-
ject’s W function in the corresponding argumentation framework. In
order to sample B and W , and thus complete the definition of the
sampled argumentation framework, SPA uses the well-established
Kernel Density Estimation (KDE) sampling method [47]: First, SPA
samples a participant at random from the participant list and retrieves
her answers in both Q1 and Q2. Then, SPA uses a Gaussian KDE
method to smooth out the contribution of each of the subject’s an-
swers (inQ1 andQ2) over a local neighborhood of possible answers,
resulting in a probability distribution centered around the subject’s

actual answers. Then, SPA samples the probability distribution and
uses the sample as B and W . This process makes it possible to sam-
ple an infinite variety of B and W , while using a finite set of points
as “anchors” for the sampling process.

Algorithm 1 Simulating I
Require: Dialog corpus C, answers sets Q1, Q2.

1: A← getArguments(C)
2: A′ ← {ω} . Create a set with the designated argument
3: for all a ∈ A do
4: MLE(a)← (#a appearances in C)/|C|
5: Add a to A′ with probability MLE(a)

6: S,R← manually annotated relations among argument in A′

7: id← uniformly sample a participant id.
8: B ← KDE(Q1(id))
9: W ← KDE(Q2(id))

10: return < A′, R, S,W,B, ω >

SPA approximates (s′, d′, r) ∼ G(s, d, a) using Algorithm 2. In
words, similar to the input of Algorithm 1, SPA is given (the same)
annotated corpus C of dialogs between humans (without any agent
intervention) on a given topic ω. If a = “terminate” then s′ = s,
d′ = da (denoting the concatenation of a to the end of dialog d),
and r = vs(ω) (the evaluation of ω in the argumentation framework
s). Recall that once the persuader posits “terminate”, the dialog ends.
Otherwise, the dialog continues with an argument by the persuadee.
To simulate the persuadee’s answer, a Machine Learning algorithm,
P (a′|d), is trained offline using C to predict the likelihood of each
argument being presented next, given dialog d. Algorithm 2 returns
s′ = s ⊕ a, denoting the addition of argument a to s and d′ = dab
where b is an argument sampled according to P (b|da). The reward
can be defined as r = −ca where ca is the cost of positing argument
a. We define r = 0 for all arguments as we assume there is no direct
cost for positing arguments. In our modeling, the cost of prolonging
the dialog is captured by γ (the discounting factor).

Algorithm 2 Simulating G(s, d, a)

Require: Dialog corpus C.
1: P ← predModel(C) . Constructed once.
2: if a=“terminate” then
3: return < s, da, vs(ω) >

4: Add a to s.
5: b ∼ P (da) s.t b ∈ s.
6: return < s, dab, 0 >

As for the rollout policy πrollout, SPA uses a simple policy where
an argument a is selected at random at odd indices of the dialog and
the predication model P (a|d) (see Algorithm 2) is used at even in-
dices to simulate the persuadee’s responses.

Training SPA
In order to train SPA, we need to construct a prediction model P for
estimating the likelihood that an argument b will be presented next,
given dialog d. To that end, SPA uses the ML methodology suggested
in [42]. The method uses a standard decision tree learning algorithm
that returns a probability model estimating the probability of each
possible argument being presented next. P is used in the definition
of G(s, d, a) – the generative process of the POMDP (see Definition
3).



During its training, the POMCP algorithm maintains a search tree
which keeps changing and expanding as long as the algorithm is run-
ning. Many POMDP-based applications that implement the POMCP
Algorithm, especially in game playing [25], train the POMCP algo-
rithm offline against itself. Namely, two instances of the POMCP
algorithm are implemented and are trained simultaneously. The first
POMCP learns to play against the second POMCP, which in turn
learns to play against the first. This methodology cannot be imple-
mented in the scope of this work as we assume that the persuadee
is not strategical and hence cannot be represented as a POMCP
instance. However, the prediction model P does capture the non-
strategic behavior of the persuadee, hence it is used in the definition
of G(·). Note that during actual deployment SPA uses the persuadee’s
actual arguments instead of simulated arguments provided by sam-
pling P .

6 Evaluation in Attitude Change
First we evaluate SPA in an attitude change task. In an attitude change
task the agent’s goal is to increase positive attitude and decrease neg-
ative attitude towards a given topic. The topic we chose to focus on
was the “You should have a Computer Science Master’s Degree”,
where the persuader’s goal is to change senior computer science stu-
dents’ attitude towards the enrollment to a master’s program. The
topic is of great interest to senior students and hence was selected.

6.1 Data Collection
Phase 1 - We recruited 56 senior bachelors students studying Com-
puter Science – 37 males and 19 females with an average age of 28.
First, each student was asked to rate a series of five statements using
an online questionnaire. The statements were regarding the students’
personal academic experience, such as “I would volunteer during my
studies if I would get credit for it”. The statement of interest to us was
“I plan to enroll in a Master’s degree program”. For each statement,
students provided a rating on the following Likert scale; 1-Strongly
Agree, 2-Agree, 3-Neutral, 4-Disagree and 5-Strongly Disagree.

Students were represented in the system using a special identifi-
cation number that was given to them prior to the experiment by our
research assistant. We made sure that the students were aware that the
identifier could not be traced back to their identity in order to avoid
possible influences on the students’ behavior. Students were divided
into 3 groups according to their answers to the question of interest:
Positive, Neutral and Negative.

A week afterwards, we matched the students such that each stu-
dent was coupled with a student from outside her group. The cou-
pling was carried out manually by our research assistant who asked
the subjects for their preferred time slots and matched every cou-
ple accordingly. The students were asked to converse about the topic
“You should have a Computer Science Master’s Degree” for a mini-
mum of 5 minutes, and to try and convince their interlocutor to adopt
their point of view. Dialogs ranged in length from 5 arguments to
11 (mean 7). Each dialog ended when one of the deliberants chose
to exit the chat environment. All dialogs were manually annotated
for arguments and the relation between those arguments by a human
expert using the annotation methodology used in [42], resulting in
an annotated dialog corpus C.6 Immediately after the chat, students

6 A second expert human annotator was also asked to annotate the dialogs
in order to ensure the quality of the annotation. In 10% of the cases, a dis-
agreement between the two annotators was recorded, making the annotation
relatively reliable.

were again asked for their rating of the statement “I plan to enroll in
a Master’s degree program” using the same scale.

In our previous study [42], we showed that people do not adhere
to the reasoning rules proposed by the argumentation theory in real-
world deliberations. It turns out that this result extends to persuasive
interactions as well. For example, only 67% of the students partici-
pating in this phase of the data collection used a conflict free argu-
ment set in their dialog. Namely, 33% of the students used at least
two arguments a and b such that a attacks b or vice versa during their
dialog.

Phase 2 - We recruited an additional 107 senior bachelors stu-
dents studying Computer Science – 68 males and 39 females with an
average age of 27. Students were asked to answer two online ques-
tionnaires, a week apart. In the first one, students were asked to rate
the persuasiveness of each of the 16 arguments in C on its own on a
scale of 0 to 1, where 0 is “The argument is not persuasive at all” and
1 is “The argument is very persuasive”. In the second one, students
were asked to rate the degree to which one argument effects another
over pairs of arguments. The scale that was used was again of 0 to 1,
where 0 stands for “No effect” and 1 is “Very strong effect”.

In C, 16 distinct arguments were detected (8 pro and 8 con). First,
a prediction modelP was trained using the methodology discussed in
Section 5. For comparison, we also considered using a Bigram model
[27]. In Bigram, the model calculates the probability P (a2|a1) for
every pair of arguments a1, a2. That is, the probability that a2 fol-
lows a1. These probabilities are estimated using a Maximum Likeli-
hood Estimator with smoothing on the dialogs from C. Both models
were evaluated in a one-left-out fashion where each dialog was taken
out of C one at a time, both models were trained over the remain-
ing dialogs and were evaluated in relation to the left-out dialog. The
perplexity measurement of P was significantly lower than that of Bi-
gram (p < 0.05), which makes it preferable.

6.2 Experimental Setting
For the evaluation of SPA we recruited 30 senior bachelors students
studying Computer Science, 20 males and 10 females with an aver-
age age of 28. Students were first asked to rate two statements using
an online questionnaire. The statements were: 1) “I plan to enroll in
a Master’s degree program”, and 2) “A Master’s degree will help me
in the future”. For each statement, students provided a rating on the
same Likert scale as used in Section 6.1, namely 1-Strongly Agree,
2-Agree, 3-Neutral, 4-Disagree and 5-Strongly Disagree.

The agent’s goal is to persuade students to change their opinion
and rate the 1st statement higher. That is, to encourage them to enroll
in a master’s degree program. If a student has already planned to
enroll in a master’s degree program prior to the experiment (i.e, she
ranked the 1st statement as “Strongly Agree”, which was the case
for 2 students), then the agent seeks to persuade the student to rate
the 2nd statement higher. Note that none of the students provided the
highest rating for the 2nd statement prior to the dialog.

We use a between-subjects experimental design with 3 conditions:

1. SPA. SPA was trained for 72 hours in which more than 22,700
sessions were simulated. For the evaluation of SPA, we replaced
the use of the prediction model P with the persuadee’s actual ar-
guments. Recall that P was used to simulate the persuadee’s re-
sponse in the offline training of the POMCP (Section 5). For the
evaluation we use the student’s actual arguments as presented in
the dialog.

2. Baseline. The Baseline agent uses the relevance heuristic sug-
gested in [42] and presents a random argument that has not yet



been presented in the dialog and directly relates to the last argu-
ment presented in the dialog. Of course, the agent only suggests
arguments that positively relate to ω, that is, support it indirectly.
If no such argument exists, the agent suggests an argument which
directly supports argument ω and does not relate to the last argu-
ment presented in the dialog. If all directly supporting arguments
of ω were already presented, the agent finishes the dialog.7

3. Human. Recall that during the data collection of human dialogs
(with no agent intervention, see Section 6.1) the students’ rating
changes were recorded. We use the 56 subjects’ answers as an
additional benchmark in the analysis.

Subjects were pseudo-randomly assigned to each of the first 2 con-
ditions (the 3rd condition is described as part of the data collection
in Section 6.1), such that each of the two subjects who rated the 1st

statement in the questionnaire as “Strongly Agree” was assigned to a
different agent (SPA or Baseline).

A week after answering the questionnaire, each student was asked
to engage in a chat with her agent. Note that students were not told
that they would interact with an automated agent. On the other hand,
they were not told that they would interact with another human either.
This was done to avoid biasing the results.

As discussed earlier in this paper, the automatic extraction of ar-
guments from texts is not in the scope of this work. Therefore, the
identification of the arguments used by the students was done using
a Wizard of Oz methodology, where during the chat a human expert8

mapped each of the persuadee’s sentences into an argument extracted
from C (see Section 6.1). In case no argument in C fits the presented
statement, a designated “NULL” argument was selected. This was
rarely used. The possibility of adapting the agent’s framework on-
line will be addressed in future work. In order to bolster the natural
flow of the dialog, the Wizard of Oz was also in charge of framing
the agent’s argument using discourse markers. Namely, the wizard
was not allowed to alter the content of the argument but could add
discourse markers such as “However”, “Moreover”, etc.

At the end of the dialog, subjects were asked to answer the online
questionnaire once again.

6.3 Results

Out of the 15 students who were equipped with SPA, 4 stu-
dents (26.6%) changed their rating by one category. Three subjects
changed from Positive to Very Positive and one from Neutral to Very
Positive. Only a single student (6.6%) from the 15 students who were
equipped with the Baseline agent changed her rating (from Negative
to Neutral). Out of the 56 students who were asked to persuade each
other in Section 6.1, 15 (26.7%) changed their opinion by at least 1
category. Out of these 15 students, 4 (7.4%) changed their opinion
by 2 categories. This result is slightly better than the results obtained
by SPA, yet the difference is not statistically significant. Neverthe-
less, the Baseline agent was significantly outperformed by the other
examined conditions using Fisher’s exact test (p < 0.05).

7 We chose to compare our method with another method that has already been
tested with human subjects. Unfortunately, existing proposals in persuasive
argumentation were not tested with people thus far. We hope to inspire other
researchers in the field to test their proposed methods with human subjects.

8 In order to prevent the expert from being biased toward one of the agents,
the expert was not involved in any other part of the research, in particular
in building the agents.

7 Evaluation in Behavior Change

We also evaluate SPA in a behavior change task. In a behavior change
task the agent’s goal is to persuade its interlocutor to choose a desired
action that does not fit with the interlocutor’s initial choice. A promi-
nent example of such a behavior change task is persuading people
to make healthier life styles choices [17]. The practical decision we
chose to focus on was “Would you rather receive a piece of chocolate
cake or an energy bar as a free snack?”, where the persuader’s goal
is to change its interlocutor’s choice given her initial one. Therefore,
two persuasive policies were learned, one that is aimed at persuading
people to choose the piece of chocolate cake, and one to persuade
people to choose the energy bar. Unlike attitude change (Section 6),
in behavior change evaluation we wish to make the decision-making
concrete and practical in order to assert that the change had taken
place. Therefore, subjects were awarded with their chosen snack at
the end of the experiment (see Section 7.2).

SPA assumes that a higher v(ω) value suggests a higher probabil-
ity that an alternative will be chosen by the persuadee. Therefore, the
agent seeks to maximize the probability that the persuadee will take
the desired action by maximizing its v(ω) value.

7.1 Data Collection

Phase 1 - We recruited 28 subjects – 18 males and 20 females, with
an average age of 33. Instead of rating a series of questions on a
Likert scale, as done in Section 6.2, in this experiment we asked sub-
jects to answer only a single question with a binary answer - “Would
you rather receive a piece of chocolate cake or an energy bar as a
free snack?”. Students were divided into 2 groups according to their
answers.

A week afterwards, we again matched the subjects such that each
subject was coupled with a subject from outside her group. The cou-
pling was carried out manually by our research assistant who asked
the subjects for their preferred time slots and matched every couple
accordingly. The subjects were asked to discuss the topic “Would
you rather receive a piece of chocolate cake or an energy bar as a
free snack?” for a minimum of 5 minutes, and try and convince their
interlocutor to adopt their point of view. Dialogs ranged in length
from 4 arguments to 11 (mean 7). Each dialog ended when one of
the participants chose to exit the chat environment. Immediately af-
ter the chat, subjects were again asked to answer the binary question
“Would you rather receive a piece of chocolate cake or an energy
bar as a free snack?”. All dialogs were manually annotated for argu-
ments and the relation between those arguments by a human expert
using the annotation methodology used in [42], resulting in an anno-
tated dialog corpus C.

Similar to the analysis presented in Section 6.1, only 79% of the
subjects participating in this phase of the data collection used a con-
flict free argument set in their dialog. Namely, 21% of the students
used at least two arguments a and b such that a attacks b or vice versa
during their dialog.

Phase 2 - We recruited 40 additional subjects – 24 males and 16
females, with an average age of 30. Subjects were asked to answer
two online questionnaires. In the first one, subjects were asked to
rate the persuasiveness of each of the 26 arguments extracted from
the dialogs collected in Phase 1 (denoted C) on its own on a scale
of 0 to 1, where 0 is “The argument is not persuasive at all” and 1
is “The argument is very persuasive”. In the second questionnaire,
subjects were asked to rate the degree to which one argument effects
another over pairs of arguments. The scale that was used was 0 to 1,



where 0 stands for “No effect” and 1 is “Very strong effect”.
In C, 26 distinct arguments were detected (13 in favor of a piece

of chocolate cake and 13 against). A prediction model P was trained
to estimate the likelihood that an argument b will be presented next
given dialog d. Similar to the analysis in Section 6.1, the perplex-
ity measurement of P was again significantly lower than that of a
Bigram prediction method (p < 0.05), which makes it preferable.

7.2 Experimental Setting
For the evaluation of SPA we recruited 30 subjects - 15 males and
15 females, with an average age of 29. Subjects were first asked to
answer the question “Would you rather receive a piece of chocolate
cake or an energy bar as a free snack?”. Out of the 30 subjects, 16
preferred to have a piece of chocolate cake and 14 preferred to have
an energy bar.

We used a between-subjects experimental design with 3 condi-
tions, the same conditions used in Section 6. Namely: SPA, Baselines
and Human.

Subjects were pseudo-randomly assigned to each of the 2 agents
(SPA and Baseline), such that each agent was assigned 15 subjects,
8 of which prefer to have a piece of chocolate cake and 7 who prefer
to have an energy bar. At the end of the dialog, subjects were again
asked to choose between a piece of chocolate cake and an energy bar.
Subjects were awarded with their snack of choice in return for their
participation in the experiment.

7.3 Results
Out of the 15 students who were equipped with SPA, 3 students
(20%) changed their decision – 2 from a piece of cake to an energy
bar and 1 from an energy bar to a piece of chocolate cake. Only a
single subject (6.6%) from the 15 subjects who were equipped with
the Baseline agent changed her decision (from a piece of cake to an
energy bar). Out of the 28 subjects who were asked to persuade each
other in Section 7.1, only 3 subjects (10.7%) changed their decisions
following the chat. This result is worse than the results obtained by
SPA, yet the difference is not statistically significant.

8 Conclusions and Future Work
In this paper we presented and evaluated a novel methodology for
human persuasion through argumentative dialogs. To that end, we
proposed a new argumentation framework called Weighted Bipo-
lar Argumentation Framework (WBAF) and suggested a gradual be-
lief valuation method for allowing reasoning within that framework.
Our methodology, combining the WBAF argumentative modeling,
machine learning on human generated dialogs and argumentative
data, and Markovian optimization techniques enabled our automated
agent, SPA, to persuade people in 2 distinct environments. In both
an attitude change environment and a behavior change environment,
SPA was able to perform on a human-like level and significantly bet-
ter than a baseline agent.

This study is part of our ongoing effort to investigate the con-
nections and challenges between Argumentation Theory and people
[42, 41, 43]. We hope that the encouraging results shown in this work
(and in previous ones) will inspire other researchers in the field to in-
vestigate other argumentation-based methods in human experiments.
We believe that bridging the gap between formal argumentation and
human argumentation is essential for making argumentation practical
for a wider range of applications.

We plan to continue this line of work by investigating other hu-
man argumentative interactions such as negotiations [35, 16, 44]. In
negotiations, both parties try to maximize some personal utility in
the face of partially conflicting interests, while striving to reach an
agreement.

We will be pleased to share the constructed corpora for future re-
search.
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